

Carbon Budget Estimation from Everglades Tree Islands: Balancing Soil Accretion and CO₂ Efflux

Leonard J. Scinto1Eric Cline2Robert Schroeder1Thomas Dreschel2Andrés Rodríguez1Fred Sklar2Alexandra Serna1

¹Southeast Environmental Research Center and Department of Earth and Environment, Florida International University, Miami, FL scintol@fiu.edu ²South Florida Water Management District, Everglades Systems Assessment Section, West Palm Beach, FL

Drainage of the Everglades results in loss of stored Soil Carbon

Yamashita et al., 2010 Ecosystems 13:1006-1019

Our objective is to develop a model based on empirical data for tree island soil carbon sequestration/release relative to water depth fluctuations

Loxahatchee Impoundment Landscape Assessment

Aich et al., 2011 J. Environ Sci Engineer 5:289-302

Cross-section of a macrocosm

Tree island planting 2006

Net soil C accumulation in tree islands is a balance between production and respiration

Organic matter respiration will be greater at higher elevations because of reduced inundation

Litter production and soil building will be higher at high elevations because of higher biomass growth

00

M1W 2006

0 0 ٠ b - 00 ۰ ۰ ٠ ۰ • 0

.

 \sim -

.

0

.......... • . . .

. . . . 0 . 0.00 ۲ • ۰. ۰ - 0 ۰. • • • • • 0 0 . . • . • • 0 0 0

M1W 2010

0

. .

.

• •

• • • • •

• • •

0

•
•

•

•

.

.

0 0

ō o

۰.

M1W 2010

Legend

SETs

O Feldspar

LICOR Litter Traps <a>D Trees

Soil CO₂ Efflux measured using a LICOR LI-8100 Infra-red Gas Analyzer (IRGA) with Multiplexer and Long-term automated chambers (4 - model 104 chambers) with 20 cm diameter collars.

Collars georectified in x, y, and z at each location. Soil elevation at each collar was determined and combined with daily stage to calculate relative water depth (RWD).

Collars sampled once quarterly for approximately 24 h.

CO₂ efflux was significantly and negatively correlated to Relative Water Depth (RWD)

W/O Limestone: y = -7.54x + 3.86, r² = 0.30, n = 225, p < 0.001 (dashed)

Efflux varied seasonally with RWD. Lower elevations saturated or flooded approximately 50% of the year while High elevations were not inundated.

Annual Soil efflux was determined for individual sites, all of which showed significant, negative linear relationships with RWD. Efflux estimates were in the range of other published values.

Annual Soil CO ₂ efflux from four plots on two LILA tree islands (mean \pm SE)							
	Estimated C efflux						
	(g C m ⁻² yr ⁻¹)	m	b	r ²	Ν	р	
M1HH	2278 ± 171	-8.83 ± 2.94	3.20 ± 1.39	0.09	90	0.003	
M1HL	970 ± 234	-14.09 ± 2.15	4.63 ± 0.30	0.33	83	<0.001	
M2HH	1419 ± 95	-3.84 ± 1.09	2.45 ± 0.63	0.16	63	0.001	
M2HL	1066 ± 109	-6.94 ± 1.06	2.36 ± 0.36	0.40	57	<0.001	
ALL	970-2278	-5.46 ± 0.46	3.85 ± 0.25	0.21	293	<0.001	

Hirano et al., 2009:2592 - 4794 g C m^2 y^1Savage and Davidson, 2003:1636 g C m^2 y^1

Litter fall adds material to surface soil

100-

50-

0-

SEP '10+

HOL, JON

Map '11

+11, NKr

+1L, A HAN

HL, M

SED '11

HIL, JON

M2

MAY 12

Map '12+ HZL, A BM

14N 12

M4

Mean leaf litter

100-

50-

0-

SED '10-

NOL, TO-

-11, NKr

MAR "11

TL, A M

nul "T SED '11-

NOL, TT

-51, NKr MAR '12

MAY, 12

ter traps

0.5x0.5m²

Litter fall adds material to surface soil

Litter traps

Mean leaf litter (g m⁻²)

0-

SED '10-

NOL, TO

MAR '11

TL, A M

JUL '11-SED '17-

NOV, TT

-11, Nbr

MAR '12

MAP.12

-51, NKr

Litter production increases with increase in biomass

0

Litter production and biomass were greater at higher elevations

Litter decomposition was similar for all tree islands and elevations

Days of decomposition

Litter decomposition was similar for all tree islands and elevations

Days of decomposition

Balance between litter production and litter decomposition results in a net gain

Sum of leaf litter input and litter bag mass loss of C per year

Parameter	M1WHH	M1WHL	M2WHH	M2WHL		
	g C m ⁻² y ⁻¹					
Leaf litter input	363	169	153	66		
Litter bag mass loss	40	<u>- 52</u>	- 48	<u>- 27</u>		
Net Gain	323	117	106	40		

Feldspar markers determine surface accretion and SETs show overall changes in elevation

Markers showed cumulative Accretion over time

Markers showed cumulative Accretion over time

Ts generally show negative elevation change

Net elevation change suggests a loss in net carbon

Loss of soil elevation suggests NET loss of soil Carbon. Loss of soil C estimated from change in elevation, soil bulk density, and soil total C content

Field bulk density, total carbon content, feldspar accumulation, variation in elevation and net gain/loss (mean ± SD)

0 /	· /					
	Soil	Soil	SET	Feldspar	Calculated	NET
	field bulk	total	gain/loss	accumulation	gain/loss	gain/loss
	density	carbon				
	(g dw cm ⁻³⁾	(mg g ⁻¹ dw)	(cm)	(cm)	(cm)	(g C m ⁻² y ⁻¹)
M1HH	0.39 ± 0.05	151.7 ± 54.5	-1.5 ± 1.3ª	3.7 ± 1.4 ^a	-5.2 ± 1.4	-867 ± 753
M1HL	0.47 ± 0.08	99.2 ± 24.6	-0.5 ± 1.5^{b}	1.1 ± 0.6^{b}	-1.6 ± 0.6	-236 ± 706
M2HH	0.52 ± 0.01	95.5 ± 36.4	0.0 ± 0.8^{c}	1.5 ± 0.6^{b}	-1.5 ± 0.6	12 ± 420
M2HL	0.46 ± 0.23	145.4 ± 74.1	-0.7 ± 0.9 ^b	1.7 ± 0.8^{b}	-2.4 ± 0.8	-468 ± 612

Carbon budget estimation

LT: litter traps, FM: feldspar markers, LB: litter bags

Conclusions

- CO₂ efflux was significantly and negatively correlated to Relative Water Depth at all locations.
- Annual efflux from LILA tree island soils are comparable to other studies conducted in similar ecosystems (Savage and Davidson, 2003; Hirano et al., 2009).
- Within a Tree Island the higher elevations generally had higher Respiration, Biomass, Litter Fall, and NET Litter inputs.
- Accretion is less than Subsidence resulting in NET elevation loss on "young" LILA Tree Islands.

Conclusions

- Respiration, Litter inputs, Accretion and Subsidence were "Balanced" for a one-year period 2010 to 2011.
- At this point, outputs are greater than inputs.
- Currently, 77-96% of inputs and 54-97% of outflows are unaccounted.
- To improve our estimates:
 - A laboratory core study is being conducted to determine effects of Live Root Respiration.
 - Fine scale soil sampling and nutrient analysis.
 - Evaluate over a longer time-frame.

scintol@fiu.edu